A REVIEW ON STUDY OF ANTHOCYANINS AND THEIR DIFFERENT HEALTH BENEFITS

Authors

  • Mayuree Rana
  • Shivani Patel
  • Nainesh Modi Department of Botany, Bioinformatics and Climate Change Impacts Management, Gujarat University

DOI:

https://doi.org/10.47413/vidya.v2i2.267

Keywords:

Anthocyanins, Anti-oxidant activity, DPPH assay, Anti-microbial activity, Anti-inflammatory

Abstract

Anthocyanins are natural occurring pigment. Anthocyanins belong to category of flavonoids which are water – soluble found in a variety of fruits and vegetables. In fruits, vegetables, and cereals, anthocyanins are the pigments which give them their red, violet, and blue colours for example purple and red berries, plums, grapes, cabbage, apples, etc., and other food. Because of high level of anthocyanins, it used as natural colorants. Anthocyanins are flavonoid compounds produced by the phenylpropanoid route known as anthocyanidin glucosides. The six most prevalent anthocyanidins are cyanidin, delphinidin, malvidin, peonidin, petunidin, and pelargonidin. Plants are shielded from oxidizers by several phenolic hydroxyl groups present in the structure anthocyanins. This review paper shows the different activity and properties shown by the anthocyanins which are used to cure the diseases. they done many antioxidants activity by using DPPH (2,2-diphenyl-1-picrylhydrazy), antimicrobial activity done by gram-positive bacterial test cultures, TNF-stimulated expression of the endothelial adhesion molecules VCAM-1 and ICAM-1 was used to assess the anti-inflammatory effects of various PASs.

References

Cisowska, A., Wojnicz, D., & Hendrich, A. B. (2011). Anthocyanins as antimicrobial agents of natural plant origin. Natural product communications, 6(1), 1934578X1100600136.

Mazza, G. (2007). Anthocyanins and heart health. Annali-Istituto Superiore Di Sanita, 43(4), 369.

Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical reviews in analytical chemistry, 42(2), 126-151.

Burton-Freeman, B., Sandhu, A., & Edirisinghe, I. (2016). Anthocyanins. In Nutraceuticals (pp. 489-500). Academic Press.

Bueno, J. M., Sáez-Plaza, P., Ramos-Escudero, F., Jiménez, A. M., Fett, R., & Asuero, A. G. (2012). Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, colour, and intake of anthocyanins. Critical reviews in analytical chemistry, 42(2), 126-151.

Bailey, N. (2018). 365 Days of Colour in Your Garden. Hachette UK.

Qiu, Z., Wang, X., Gao, J., Guo, Y., Huang, Z., & Du, Y. (2016). The tomato Hoffman’s anthocyanin less gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PloS one, 11(3), e0151067.

Alhamed, M., Issa, A. S., & Doubal, A. W. (2012). Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells (DSSC). Journal of electron Devices, 16(11), 1370-1383.

Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61(1), 1361779.

He, J., & Giusti, M. M. (2010). Anthocyanins: natural colorants with health-promoting properties. Annual review of food science and technology, 1, 163-187.

Nurraihana, H., & Norfarizan-Hanoon, N. A. (2013). Phytochemistry, pharmacology and toxicology properties of Strobilanthes crispus. International Food Research Journal, 20(5), 2045.

Liza, M. S., Rahman, R. A., Mandana, B., Jinap, S., Rahmat, A., Zaidul, I. S. M., & Hamid, A. (2010). Supercritical carbon dioxide extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca). Food and Bioproducts Processing, 88(2-3), 319-326.

Chua, L. Y. W., Chua, B. L., Figiel, A., Chong, C. H., Wojdyło, A., Szumny, A., & Choong, T. S. Y. (2019). Antioxidant activity, and volatile and phytosterol contents of Strobilanthes crispus dehydrated using conventional and vacuum microwave drying methods. Molecules, 24(7), 1397.

Kumarmath, P., Kawatal, A., & Nimbargi, K. (2022). A Review On Extraction Of Dye From Terminalia Catappa Hull: A Substitute To Synthetic Dyes. Journal of Emerging Technologies and Innovative Research (JETIR), 9(2).

Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.

Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871.

Ma, Y., Ding, S., Fei, Y., Liu, G., Jang, H., & Fang, J. (2019). Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia coli and Salmonella. Food Control, 106, 106712

Zhu, X. L., Xu, Y., Sun, D. J., Li, H., & Chen, L. X. (2022). The genus Strobilanthes: phytochemistry and pharmacology. TMR Modern Herb Med, 5(3), 15.

Mizukami, H. (2002). Kazuki Saito Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan Hajime Mizukami Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya. Plant Biotechnology and Transgenic Plants, 92, 66.

Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. (2017). Fabrication, optimization and characterization of natural dye sensitized solar cell. Sci Rep 7: 41470.

Lee, D. W., & Collins, T. M. (2001). Phylogenetic and ontogenetic influences on the distribution of anthocyanins and betacyanins in leaves of tropical plants. International Journal of Plant Sciences, 162(5), 1141-1153.

Laleh, G. H., Frydoonfar, H., Heidary, R., Jameei, R., & Zare, S. (2006). The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pakistan Journal of Nutrition, 5(1), 90-92.

Roobha, J. J., Saravanakumar, M., Aravindhan, K. M., & Devi, P. S. (2011). The effect of light, temperature, pH on stability of anthocyanin pigments in Musa acuminata bract. Research in plant biology, 1(5), 5-12.

Khan, P. M. A., & Farooqui, M. (2011). Analytical applications of plant extract as natural pH Indicator: a review. Journal of advanced scientific research, 2(04), 20-27.

Giusti, M. M., & Wrolstad, R. E. (2003). Acylated anthocyanins from edible sources and their applications in food systems. Biochemical engineering journal, 14(3), 217-225.

Fleschhut, J., Kratzer, F., Rechkemmer, G., & Kulling, S. E. (2006). Stability and biotransformation of various dietary anthocyanins in vitro. European journal of nutrition, 45, 7-18.

Wahyuningsih, S., Wulandari, L., Wartono, M. W., Munawaroh, H., & Ramelan, A. H. (2017, April). The effect of pH and colour stability of anthocyanin on food colorant. In IOP conference series: Materials science and engineering (Vol. 193, No. 1, p. 012047). IOP Publishing.

Devi, P. S., Saravanakumar, M., & Mohandas, S. (2012). The effects of temperature and pH on stability of anthocyanins from red sorghum (Sorghum bicolour) bran. African Journal of Food Science, 24, 567-573.

Yusoff, A., Kumara, N. T. R. N., Lim, A., Ekanayake, P., & Tennakoon, K. U. (2014). Impacts of temperature on the stability of tropical plant pigments as sensitizers for dye sensitized solar cells. Journal of Biophysics, 2014.

Contreras-Lopez, E., Casta, A., González-Olivares, L. G., & Jaimez-Ordaz, J. (2014). Effect of light on stability of anthocyanins in ethanolic extracts of Rubus fruticosus. Food and Nutrition Sciences, 2014.

Amogne, N. Y., Ayele, D. W., & Tsigie, Y. A. (2020). Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Materials for Renewable and Sustainable Energy, 9, 1-16.

Ghosh, D., & Konishi, T. (2007). Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pacific journal of clinical nutrition, 16(2).

Lee, J., Lee, H. K., Kim, C. Y., Hong, Y. J., Choe, C. M., You, T. W., & Seong, G. J. (2005). Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. British Journal of Nutrition, 93(6), 895-899.

Tena, N., Martín, J., & Asuero, A. G. (2020). State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants, 9(5), 451.

Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155-180.

Hong, H. T., Netzel, M. E., & O'Hare, T. J. (2020). Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food chemistry, 319, 126515.

Netzel, M., Netzel, G., Tian, Q., Schwartz, S., & Konczak, I. (2006). Sources of antioxidant activity in Australian native fruits. Identification and quantification of anthocyanins. Journal of Agricultural and Food Chemistry, 54(26), 9820-9826.

Burdulis, D., Sarkinas, A., Jasutiene, I., Stackevicené, E., Nikolajevas, L., & Janulis, V. (2009). Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta poloniae pharmaceutical, 66(4), 399-408.

Česonienė, L., Jasutienė, I., & Šarkinas, A. (2009). Phenolics and anthocyanins in berries of European cranberry and their antimicrobial activity. Medicinal, 45(12), 992.

Blando, F., Calabriso, N., Berland, H., Maiorano, G., Gerardi, C., Carluccio, M. A., & Andersen, Ø. M. (2018). Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences, 19(1), 169.

Jassim, S. A., & Naji, M. A. (2003). Novel antiviral agents: a medicinal plant perspective. Journal of applied microbiology, 95(3), 412-427.

Swaminathan, K., Müller, P., & Downard, K. M. (2014). Substituent effects on the binding of natural product anthocyanidin inhibitors to influenza neuraminidase with mass spectrometry. Analytica chemical acta, 828, 61-69.

Roxas, M., & Jurenka, J. (2007). Colds and influenza: a review of diagnosis and conventional, botanical, and nutritional considerations. Alternative Medicine Review, 12(1).

Mohammadi Pour, P., Fakhri, S., Asgary, S., Farzaei, M. H., & Echeverría, J. (2019). The signalling pathways, and therapeutic targets of antiviral agents: focusing on the antiviral approaches and clinical perspectives of anthocyanins in the management of viral diseases. Frontiers in pharmacology, 10, 1207.

Yamaura, K., Shimada, M., & Ueno, K. (2011). Anthocyanins from bilberry (Vaccinium myrtillus L.) alleviate pruritus in a mouse model of chronic allergic contact dermatitis. Pharmacognosy Research, 3(3), 173.

Lu, J. N., Panchanathan, R., Lee, W. S., Kim, H. J., Kim, D. H., Choi, Y. H., ... & Hong, S. C. (2017). Anthocyanins from the fruit of Vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in a549 cells. Asian Pacific journal of cancer prevention: APJCP, 18(11), 2919.

Wang, L. S., & Stoner, G. D. (2008). Anthocyanins and their role in cancer prevention. Cancer letters, 269(2), 281-290.

Chen, J., Xu, B., Sun, J., Jiang, X., & Bai, W. (2022). Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Critical Reviews in Food Science and Nutrition, 62(26), 7242-7254.

Downloads

Published

16-11-2023

How to Cite

Rana, M., Patel, S., & Modi, N. (2023). A REVIEW ON STUDY OF ANTHOCYANINS AND THEIR DIFFERENT HEALTH BENEFITS. VIDYA - A JOURNAL OF GUJARAT UNIVERSITY, 2(2), 280–286. https://doi.org/10.47413/vidya.v2i2.267

Issue

Section

Articles