APPLICATION OF NEMATODE DERIVED ENZYMES IN INDUSTRIES-A REVIEW

Authors

  • Hitesh Chauhan
  • Thakar Prakashkumar Gujarat University
  • Mohsin Ali
  • Dr. Linz-buoy George

DOI:

https://doi.org/10.47413/vidya.v2i2.242

Keywords:

Nematodes, Enzymes, Cellulase, Amylase, Hemicellulase, Lignin Digesting Enzymes, Industry, Industry Application

Abstract

A nematode is a roundworm, a member of the phylum Nematoda. They are the most abundant multicellular animals on Earth, with over 28,000 known species. Nematodes can be found in almost all environments, including soil, water, plants, animals, and even the human body. There are many enzymes that have been derived from nematodes like Cellulase, Amylase, Pectinase, Lignin Digesting enzymes, Hemicellulase etc. These enzymes are important for a variety of industrial and agricultural applications. They are used to make food, paper, biofuels, and bioplastics. They are also used to improve the digestibility of plant material for livestock. These enzymes are essential for the breakdown of plant cell walls, which makes it possible to use these materials for a variety of purposes. Cellulase is used to make biofuels, such as ethanol and biodiesel. It is also used to make paper, textiles, and bioplastics. Amylase is used to make bread, beer, and other food products. It is also used to make industrial chemicals, such as glucose syrup and starch acetate. Pectinase is used to make fruit juices and wine. It is also used to make textiles and other industrial products. Lignin-digesting enzymes are used to make paper, biofuels, and bioplastics. They are also used to treat soil contamination and to improve the digestibility of plant material for livestock. Hemicellulase is used to make food, paper, and biofuels. It is also used to improve the digestibility of plant material for livestock.

References

Shah, M. M., & Mahamood, M. (2017). Introductory chapter: nematodes-a lesser known group of organisms. Nematology-Concepts, Diagnosis and Control, 1, 68589.

Hoeppli, R. (1959). Parasites and parasitic infections in early medicine and science. Parasites and Parasitic Infections in Early Medicine and Science.

Borellus P. (1656) ‘Observatiouum Micioscopicarum Cenluria,’ Hagoe coniil.is.384, Paris.

Needham F. An account of some new microscopical discoveries. London. (1743). p.

Rudolphi CA. (1819) Entozoorum synopsis cui acceduntmantesia duplex et indices locupletissimi. Berolini, Sumtibus A. Rücker pp. 811.

Leidy J. (1851) Contributions to helminthology. Proceedings of the Academy of Natural Sciences of Philadelphia. 1851;5:205-209, 224-227.

Dujardin F. (1845) Histoire naturelle des helminthes ouversintestinaux. De L’imprimerie de Crapelet, Rue de Vaugirard Paris.. pp. 654.

Brill E. J and Leiden. (1884) De Man JG. Die frei in der reinen Erde und imsüssen Wasserlebenden Nematoden der niederländischen Fauna. Einesystematisch-faunistische Monographie,;1-206.

Zinoviev, V. G. (1957). Enzymatic activity of the nematodes parasitizing plants. Zool. Zh, 36(017-620), 1.

Krusberg, L. R. (1960). Hydrolytic and respiratory enzymes of species of Ditylenchus and Pratylenchus. Phytopathology, 50(1), 9-22.

Myers, R. F. (1963). Materials discharged by plant-parasitic nematodes. Phytopathology 53, 884 (Abstr.).

Myuge, (1959). Material on the physiological characteristics of predaceous Diplogasterata. (In Rus- sian). Rabot. Gel'mintol. Let. Skrjabin pp. 250-252.

Tracey, M. V. (1958). Cellulase and chitinase in plant nematodes. Nematologica 3, 179-183.

Dropkin, V. H. (1963). Cellulase in phytoparasitic nematodes. Nematologica 9, 444-454.

Morgan, G. T. & Mcallan, J. W. (1962). Hydrolytic enzymes in plant-parasitic nematodes. Nematologica 8, 209-215.

Krusberg, (1963). Effects of galling by Ditylenchus dipsaci on pectins in alfalfa. Nematologica 9, 341-346.

Chandra M., Kalra A., Sharma, P.K., Kumar H. and Sangwan, R.S. (2010) Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass Bioenerg., 34:805–811.

Zheng, J Yoon L.W., Ang T. N., Ngoh G.C. and Seak M.C.A. (2014) Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenerg., 67:319–338.

Bird, A. F., Downtown, J. S., and Hawker, J. S. (1975) Cellulase secretionby second stage larvae of the root-knot nematode (Meloidogynejavanica). Marcellia 38:165-169.

Rosso, M. N., Favery, B., Piotte, C., Arthaud, L., De Boer, J. M., Hussey, R. S., ... & Abad, P. (1999). Isolation of a cDNA encoding a β-1, 4-endoglucanase in the root-knot nematode Meloidogyne incognita and expression analysis during plant parasitism. Molecular Plant-Microbe Interactions, 12(7), 585-591.

Smant G, Stokkermans JP, Yan Y, de Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, et al. (1998). Endogenous cellulases in animals: isolation of beta-1, 4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci U S A. 95(9):4906–4911.

Mai C., U. Kues, and H. Militz, (2004) “Biotechnology in the wood industry,” Applied Microbiology and Biotechnology, vol. 63, no. 5, pp. 477–494.

Singh, R. C. Kuhad, and O. P. Ward, (2007) “Industrial application of microbial cellulases,” in Lignocellulose Biotechnologgy: Future Prospects, R. C. Kuhad and A. Singh, Eds., pp. 345–358, I.K.International Publishing House, New Delhi, India.

Pere J, A. Puolakka, P. Nousiainen, and J. Buchert, (2001) “Action of purified Trichoderma reesei cellulases on cotton fibers and yarn,” Journal of Biotechnology, vol. 89, no. 2-3, pp. 247–255.

Kuhad, R. C. R. Gupta, and Y. P. Khasa, (2010) “Bioethanol production from lignocellulosic biomass: an overview,” in Wealth from Waste, B. Lal, Ed., Teri Press, New Delhi, India.

Hebeish and N. A. Ibrahim, (2007) “The impact of frontier sciences on textile industry,” Colourage, vol. 54, pp. 41–55.

M. Karmakar and R. R. Ray, (2011) “Current trends in research and application of microbial cellulases,” Research Journal of Microbiology, vol. 6, no. 1, pp. 41–53.

R. K. Sukumaran, R. R. Singhania, and A. Pandey, (2005) “Microbial cellulases—production, applications and challenges,” Journal of Scientific and Industrial Research, vol. 64, no. 11, pp. 832–844.

Y. M. Galante, A. DeConti, and R. Monteverdi, (1998) “Application of Trichoderma enzymes in food and feed industries,” in Trichoderma and Gliocladium—Enzymes, G. F. Harman and C. P. Kubicek, Eds., vol. 2 of Biological Control and Commercial Applications, pp. 311–326, Taylor & Francis, London, UK.

Cinar, (2005) “Effects of cellulase and pectinase concentrations on the colour yield of enzyme extracted plant carotenoids,” Process Biochemistry, vol. 40, no. 2, pp. 945–949.

W. Bamforth, (2009) “Current perspectives on the role of enzymes in brewing,” Journal of Cereal Science, vol. 50, no. 3, pp. 353–357.

R. C. Minussi, G. M. Pastore, and N. Dur´an, (2002) “Potential applications of laccase in the food industry,” Trends in Food Science and Technology, vol. 13, no. 6-7, pp. 205–216.

L. M. J. de Carvalho, I. M. de Castro, and C. A. B. da Silva, (2008) “A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L. Merril) bymicro-and ultra-filtration,” Journal of Food Engineering, vol. 87, no. 4, pp. 447–454.

Srivastava N., Rawat R., Oberoi H.S. and Ramteke P.W. (2015) A review on fuel ethanol production from lignocellulosic biomass. Int. J. Green En. 12:949–960.

Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. (2003). Microbial a-amylases: a biotechnological perspective. Process Biochem 38, 1599 - 1616.

Kandra, L. (2003). _-Amylases of medical and industrial importance. Journal of Molecular Structure (Theochem) 666–667, 487–498.

Rajagopalan, G.; Krishnan, C. (2008). Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresour Technol 99, 3044-3050.

Reddy, N.S.; Nimmagadda, A.; Sambasiva Rao, K.R.S. (2003). An overview of the microbial a-amylase family. Afr. J. Biotechnol. 2, 645- 648.

Yu, Y., Chen, H., Hua, X., Dang, Y., Han, Y., Yu, Z., ... & Li, H. (2020). Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans. Science of the Total Environment, 726, 138679.

Nielsen, J. E., & Borchert, T. V. (2000). Protein engineering of bacterial α-amylases. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2), 253-274.

Hmidet, N.; El-Hadj Ali, N.; Haddar, A.; Kanoun, S.; Alya, S.; Nasri, M. (2009). Alkaline proteases and thermostable a-amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochemical Engineering Journal 47, 71–79.

Chi, M.; Chen, Y.; Wu, T.; Lo, H.; Lin, L. (2009). Engineering of a truncated _-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J. Biosci. Bioeng. xx, xxx-xxx.

Moraes, L.M.P.; Filho, S.A.; Ulhoa, C.J. (1999). Purification and some properties of an a-amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 15, 561-564.

Öner, E.T. (2006). Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Yeast 23, 849–856.

Feitkenhauer, H. (2003). Anaerobic digestion of desizing wastewater: influence of pretreatment and anionic surfactant on degradation and intermediate accumulation. Enzyme Microb. Technol. 33, 250–258.

Tanyildizi, M.S.; Ozer, D.; Elibol, M. (2005). Optimization of a-amylase production by Bacillus sp. using response surface methodology Process Biochem 40, 2291–2296.

Ashis KM, Munindra B, Sudhir KR. (2009) To study the influence of different components of fermentable substrates on induction of extracellular alpha amylase synthesis by Bacillus subtilis. Biochemical Engr. J.; 43(2):149-156.

Kirk O, Borchert TV, Fuglsaang CC. (2002) Industrial enzyme applications. Curr Opin Biotech.; 13:345-351.

Saini HS, Saini R, Dahiya A, Mehta S. (2016) Extraction and Partial Purification and Characterization of Amylase from Apple (Malus Pumila). International Journal of Food and Nutritional Science.; 5(3). ISSN: 2320-7876.

Souza, P. M. D., & Magalhães, P. D. O. (2010). Application of microbial α-amylase in industry-A review. Brazilian journal of microbiology, 41, 850-861.

Cornuault, V.; Posé, S.; Knox, J.P. (2018) Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems. Food Chem., 246, 275–285.

Pedrolli, D.B.; Monteiro, A.C.; Gomes, E.; Carmona, E.C. (2009) Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol. J., 3, 9–18.

Goffart, H., & Heiling, A. (1962). Beobachtungen über die enzymatische Wirkung von Speicheldrüsensekreten pflanzenparasitärer Nematoden. Nematologica, 7(2), 173-176.

Myuge, (1959). Material on the physiological characteristics of predaceous Diplogasterata. (In Rus- sian). Rabot. Gel'mintol. Let. Skrjabin pp. 250-252.

Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Bioresour 23Technol 77:215–227.

Kareem SO, Adebowale AA (2007) Clarification of orange juice by crude fungal pectinase from citrus peel. Niger Food J 25(1):130–136.

Chaudhri A, Suneetha V (2012) Microbially derived pectinases: a review. J Pharm Biol Sci 2:01–05 Chaudhri A, Suneetha V (2012) Microbially derived pectinases: a review. J Pharm Biol Sci 2:01–05.

Makky EA, Yusoff MM (2015) Bioeconomy: pectinases purification and application of fermented waste from Thermomyces lanuginosus. J Med Bioeng 4(1):76–80.

Sreenath HK, Sudarshanakrishna KR, Santhanam K (1994) Improvement of juice recovery from pineapple pulp/residue using cellulases and pectinases. J Ferment Bioeng 78:486–488.

Demir N, Acar J, Sariolu M, Mutlu M, (2000). The use of commercial pectinase in fruit juice industry. Part 3: immobilized pectinase for mash treatment. J Food Eng 47:275–280.

Tochi BN, Wang Z, Xu SY, Zhang W (2009) The Influence of a pectinase and pectinase/hemicellulases enzyme preparations on percentage pineapple juice recovery, particulates and sensory attributes. Pak J Nutrition 8:1184–1189.

Bhat MK (2000) Cellulases and related enzymes in biotechnology.Biotechnol Adv 18:355–383.

Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944.

Revilla I, Ganzalez-san jose ML (2003) Addition of pectolytic enzymes: an enological practice which improves the chromaticity and stability of red wines. Int J Food Sci Technol 38:29–36.

Praveen KG, Suneetha V (2014) A cocktail enzyme—pectinase from fruit industrial dump sites: a review. Res J Pharm Biol Chem Sci 5(2):1252–1258.

Biz A, Farias FC, Motter FA, de Paula DH, Richard P, Krieger N, Mitchell DA (2014) Pectinase activity determination: an early deceleration in the release of reducing sugars throws a spanner in the works. Plos One 9(10): e109529.

Collares RM, Miklasevicius LVS, Bassaco MM, Salau NGP, Mazutti MA, Bisognin DA, Terra LM (2012) Optimization of enzymatic hydrolysis of cassava to obtain fermentable sugars. J Zhejiang Univ Sci B (Biomed & Biotechnol) 13(7):579–586.

Hossain ABMS, Ahmed SA, Ahmed MA, Faris MAA, Annuar MSM, Hadeel M, Norah H (2011) Bioethanol fuel production from rotten banana as an environmental waste management and sustainable energy. Afr J Microbiol Res 5(6):586–598.

Carr JG (1985) Tea, coffee and cocoa. In: Wood BJB (ed) Microbiology of fermented foods. London, UK, Elsevier Applied Science, pp 133–154. ISBN 0751402168.

Hoondal GS, Tewari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 5:409–418.

Ahlawat, S.; Dhiman, S.S.; Battan, B.; Mandhan, R.P.; Sharma, J. (2009). Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochemistry 44, 521–526.

Oumer, O.J.; Abate, D. (2018) Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Res. Int., 2961767.

Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, K.; Mahajan, R. (2016) Microbial pectinases: An ecofriendly tool of nature for industries. Biotech, 6, 1–13.

Park, Y. J., & Kong, W. S. (2018). Genome-wide comparison of carbohydrate-active enzymes (CAZymes) repertoire of Flammulina ononidis. Mycobiology, 46(4), 349-360.

da Silva Coelho-Moreira J, Maciel GM, Castoldi R (2013) Involvement of lignin-modifying enzymes in the degradation of herbicides. In: Price A (ed.) Herbicides - Advances in Research. Croatia: In Tech.

Chitwood BG, Chitwood MB. (1950) Introduction to Nematology. Baltimore: Monumental Printing Company; revised edition. p. 213.

Rajasundari, K., & Murugesan, R. (2011). Decolourization of distillery waste water – role of microbes and their potential oxidative enzymes (review). Journal of Applied Environmental and Biological Sciences, 1(4), 54–68.

Pizzul, L., Castillo, M. D.P., & Stenström, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 20(6), 751–759.

Mehta, R. (2012). Bioremediation of textile waste water. Colourage, 59(4), 46.

Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology advances, 30(6), 1447-1457.

Weng, J. K., Li, X., Bonawitz, N. D., & Chapple, C. (2008). Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Current opinion in biotechnology, 19(2), 166-172.

Bilal, M., & Iqbal, H. M. (2020). State-of-the-art strategies and applied perspectives of enzyme biocatalysis in food sector—current status and future trends. Critical reviews in food science and nutrition, 60(12), 2052-2066.

Biely, P., Singh, S., & Puchart, V. (2016). Towards enzymatic breakdown of complex plant xylan structures: state of the art. Biotechnology Advances, 34(7), 1260-1274.

Singh, J., Kundu, D., Das, M., & Banerjee, R. (2019). Enzymatic processing of juice from fruits/vegetables: An emerging trend and cutting edge research in food biotechnology. In M. Kuddus (Ed.), Enzymes in Food Biotechnology (pp. 419–432). Elsevier.

Gao, B., Allen, R., Davis, E. L., Baum, T. J., & Hussey, R. S. (2004). Developmental expression and biochemical properties of a β‐1, 4‐endoglucanase family in the soybean cyst nematode, Heterodera glycines. Molecular Plant Pathology, 5(2), 93-104.

Shibuya, H., & Kikuchi, T. (2008). Purification and characterization of recombinant endoglucanases from the pine wood nematode Bursaphelenchus xylophilus. Bioscience, biotechnology, and biochemistry, 72(5), 1325-1332.

Danchin, E. G., Rosso, M. N., Vieira, P., de Almeida-Engler, J., Coutinho, P. M., Henrissat, B., & Abad, P. (2010). Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proceedings of the National Academy of Sciences, 107(41), 17651-17656.

Shallom, D., & Shoham, Y. (2003). Microbial hemicellulases. Current Opinion in Microbiology, 6(3), 219–228

Danalache, F., Mata, P., Alves, V. D., & Moldao-Martins, M. (2018). Enzyme-assisted extraction of fruit juices. In G. Rajauria & B. K. Tiwari (Eds.), Fruit Juices (pp. 183–200). Elsevier.

Toushik, S. H., Lee, K.-T., Lee, J.-S., & Kim, K.-S. (2017). Functional applications of lignocellulolytic Enzymes in the fruit and vegetable processing industries: Applications of lignocellulolytic enzymes. Journal of Food Science, 82(3), 585–593.

Downloads

Published

28-09-2023

How to Cite

Chauhan, H., Prakashkumar, T., Ali, M., & George, L. (2023). APPLICATION OF NEMATODE DERIVED ENZYMES IN INDUSTRIES-A REVIEW. VIDYA - A JOURNAL OF GUJARAT UNIVERSITY, 2(2), 215–223. https://doi.org/10.47413/vidya.v2i2.242

Issue

Section

Articles